Correlational Strength and Computational Algebra of Synaptic Connections Between Neurons
نویسنده
چکیده
Intracellular recordings in spinal cord motoneurons and cerebral cortex neurons have provided new evidence on the correlational strength of monosynaptic connections, and the relation between the shapes of postsynaptic potentials and the associated increased firing probability. In these cells, excitatory postsynaptic potentials (EPSPs) produce crosscorrelogram peaks which resemble in large part the derivative of the EPSP. Additional synaptic noise broadens the peak, but the peak area -i.e., the number of above-chance firings triggered per EPSP -remains proportional to the EPSP amplitude. A typical EPSP of 100 ~v triggers about .01 firings per EPSP. The consequences of these data for information processing by polysynaptic connections is discussed. The effects of sequential polysynaptic links can be calculated by convolving the effects of the underlying monosynaptic connections. The net effect of parallel pathways is the sum of the individual contributions.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملLong Term Plasticity, Biophysical Models Computational Neuroscience Encyclopedia
Connections between neurons are called synapses. Their strength is defined as the voltage amplitude, or slope, of a postsynpatic neuron response to a presynaptic action potential. The synapses can change in strength, i.e., they are plastic, and these changes can operate on different time scales. Long-term plasticity denotes the synaptic changes that last more than 20-30 minutes (see Fig. 1). Th...
متن کامل